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Abstract

In this paper, a method based on the minimization of a quadratic error function is used as a tool to
improve the predictions of noise transmission loss, and it is applied to the case of a double partition filled
with an absorbent material. When experimental results are available, the method can be used to determine
the value of the parameters of the materials composing the structure.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The prediction of the transmission loss of air noise through a multi-layer partition is an
important subject, with important applications in the field of building acoustics. At present, there
are several theories developed for the prediction of the transmission loss of different multi-layer
configurations. In the seminal paper [1] the case of normal incidence on a multiple-layer
configuration was modelled. Later, London [2] introduced the diffuse field approximation in these
studies, generalizing to the case of oblique incidence, and Mullholland et al. [3] proposed a limit
angle condition for the applicability of the diffuse field approximation.

In practice, the modelling of the transmission loss of a given configuration is only possible once
the mechanical and acoustical parameters of each element in the structure are known. In Refs. [4–7]
the prediction of transmission losses was performed considering different characteristics of the
layers in diffuse field approximation. The numerical values of the parameters characterizing the
acoustic behaviour of the impervious layer and the absorbent material can be taken from a
number of tables, obtained from experimental measurements [8–11]. However, in most of the
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cases only average values of the parameters are available. For a closer agreement between the
theoretical models and the experimental results, in particular those referring to the prediction of
the transmission loss, it is desirable to deal with material parameters with values closer to their
real ones. This is actually one of the main causes of disagreement between the theoretical
predictions and the measurements of the transmission loss. Then, in order to improve the
predicted results, the parameters characterizing the different materials forming the structure must
be accurately evaluated.

In this paper, a minimization method is proposed for the determination of material parameters,
which subsequently provides an improvement of the prediction loss of a layered configuration.
The starting point of this analysis is the theoretical model proposed by Trochidis and Kalaroutis
[12]. Using this model, together with experimental measurements, a quadratic error function is
defined in order to find the parameters that minimize the error. The results obtained with this
method are compared with others presented in Refs. [6,12], showing the efficiency of the proposed
method.

2. Theoretical model

2.1. Model of Trochidis and Kalaroutis

The system considered in Ref. [12] is shown in Fig. 1. It consists of two infinite and uncoupled
thin, elastic layers, whose inner space is filled with an absorbent material. Similar configurations
have been considered in Refs. [13,14].

The structure is excited with a plane sound wave, with pressure pinðx; zÞ; which impinges on the
first layer at an angle y: It is assumed that the time dependence is harmonic, with an angle
frequency o: The theoretical model for this system was derived in Ref. [12]. In this section the
main results are reviewed.

ARTICLE IN PRESS
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The system can be divided in three regions I–III, separated by the layers. The propagation of
the sound field in each region is described by the scalar Helmholtz equation

ðr2 þ k2
0ÞpIðx; zÞ ¼ 0; zo0; ð1Þ

ðr2 þ k2
bÞpIIðx; zÞ ¼ 0; h1ozod þ h1; ð2Þ

ðr2 þ k2
0ÞpIIIðx; zÞ ¼ 0; z > d þ h1 þ h2; ð3Þ

where k0 ¼ o=c0 is the acoustic wavenumber, and kb is a complex wavenumber describing the
propagation in the absorbing material, with complex density rb: This complex wavenumber is
defined as jkb ¼ G ¼ aþ jb; where G is the material propagation constant. Several authors work
on the characterization of absorbing materials, and empirical formulas for the evaluation of kb

have been proposed by, e.g., Delany and Bazley [10], Miki [15], Allard and Champoux [16] or
Voronina [11]. Thus, the propagation constant can be obtained from any of these models. The
total pressure in zone I is given by pIðx; zÞ ¼ pinðx; zÞ þ prðx; zÞ:

Together with Eqs. (1)–(3), the equation of movement of the layers must be considered, given
by

ðD1r4 � r1h1o2Þw1ðxÞ ¼ pIðx; 0Þ � pIIðx; h1Þ; ð4Þ

ðD2r4 � r2h2o2Þw2ðxÞ ¼ �pIIIðx; d þ h1 þ h2Þ þ pIIðx; d þ h1Þ; ð5Þ

where wnðxÞ is the displacement of the layer on its normal direction ðn ¼ 1; 2Þ; rn is the density of
the layer material, hn is the layer thickness, Dn is the bending stiffness of the layer and pII ðx; zÞ is
the pressure in the acoustic absorbent material. The loss factor Z is introduced through the
complex Young’s module, defined as E0

n ¼ Enð1 þ jZnÞ: Since Dn is proportional to En; then
the layers can be characterized by a complex bending stiffness D0

n ¼ Dnð1þ jZnÞ: In the following
the primes are omitted, and it is assumed that Dn is a complex quantity.

Considering that the absorbent material is in perfect contact with both layers, the boundary
conditions are, at the first layer,

@pI

@z

����
����
z¼0

¼ r0o
2w1ðxÞ;

@pII

@z

����
����
z¼h1

¼ rbo
2w1ðxÞ ð6Þ

and at the second layer

@pII

@z

����
����
z¼dþh1

¼ rbo
2w2ðxÞ;

@pIII

@z

����
����
z¼dþh1þh2

¼ r0o
2w2ðxÞ: ð7Þ

The complex density appearing in Eqs. (6) and (7) relates to the complex wavenumber through the
expression

k2
b

k2
0

¼
gsrb

r0

; ð8Þ

where g is the specific heats ratio, s is the porosity and r0 the air density.
The system of differential equations obtained allows one to find the value of the transmitted

pressure, and from it, the transmission loss of the configuration. The solution can be found
numerically after a Fourier transform in the propagation variable x is performed [12]. Consider
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the following transformations:

wnðxÞ ¼
1

2p

Z þN

�N

wnðsÞe� jsx ds; n ¼ 1; 2; ð9Þ

PIðx; zÞ ¼ Pinðx; zÞ þ Prðx; zÞ ¼
1

2p

Z
N

�N

½PinðsÞeaz þ PrðsÞe�az	e� jsx ds; ð10Þ

PIIðx; zÞ ¼
1

2p

Z þN

�N

ðAðsÞ cos bz þ BðsÞ sin bzÞe� jsx ds; ð11Þ

pIIIðx; zÞ ¼
1

2p

Z þN

�N

ptðsÞeaz e� jsx ds; ð12Þ

where the transformation variables are defined as a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � k2

0

q
and b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

b � s2
q

:

The system formed by Eqs. (3) and (6), together with the boundary conditions (6) and (7) can be
now expressed as algebraic relations, in the form

ðD1s4 � r1h1o2Þw1 ¼ pin þ pr � A cosðbh1Þ � B sinðbh1Þ; ð13Þ

ðD2s4 � r2h2o2Þw2 ¼ A cosðbðh1 þ dÞÞ þ B sinðbðh1 þ dÞÞ � pte
aðh1þh2þdÞ; ð14Þ

aðpin � prÞ ¼ r0o
2w1; ð15Þ

b½�A sinðbh1Þ þ B cosðbh1Þ	 ¼ rbo
2w1; ð16Þ

b½�A sinðbðh1 þ dÞÞ þ B cosðbðh1 þ dÞÞ	 ¼ rbo
2w2; ð17Þ

apte
aðh1þh2þdÞ ¼ r0o

2w2: ð18Þ

Eqs. (13)–(18) constitute the model from which the transmitted pressure can be obtained.
However, for the numerical analysis it is convenient to write system (13)–(18) in the matrix form
MX ¼ B; where X ¼ ðpr;w1;A;B;w2; ptÞ

T; B ¼ ðapin; pin; 0; 0; 0; 0Þ
T and the matrix M defined as

M ¼

a r0o
2 0 0 0 0

�1 D1s4 � r1h1o2 cos bh1 sin bh1 0 0

0 �rbo
2 �b sin bh1 b cos bh1 0 0

0 0 �b sinðbðh1 þ dÞÞ b cosðbðh1 þ dÞÞ �rbo
2 0

0 0 �cosðbðh1 þ dÞÞ �sinðbðh1 þ dÞÞ D2s4 � r2h2o2 eaðh1þh2þdÞ

0 0 0 0 r0o
2 �aeaðh1þh2þdÞ

0
BBBBBBBBB@

1
CCCCCCCCCA

ð19Þ

whose unknowns are the reflected pressure, pr; the layer displacements, w1 and w2; the pressure
wave generated in the chamber and modelled by A and B as defined in Eq. (11), and the
transmitted pressure pt: The number of unknowns of the system could be reduced to w1; w2; A and
B by using Eqs. (15) and (18), which relate pt and pr with w2 and w1; respectively. However, since
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the matrix M is sparse, the added computational cost is not high. Hence the number of unknowns
in X is maintained.

Once the transmitted pressure is found, the transmission coefficient for a wave incident at an
angle y can be obtained from the relation

tðyÞ ¼
pt

pin

����
����
2

: ð20Þ

Note that, for the plane wave considered, the angle of incidence y relates to the variables s and a
of the spatial Fourier transform as s ¼ k0 sin y; and a ¼ jk0 cos y:

Finally, if the incident pressure field verifies the diffuse field condition [3], typical for most
realistic situations, the total transmittivity can be obtained from the integral formula

td ¼

R ylim

0 tðyÞ cos y sin y dyR ylim

0 cos y sin y dy
; ð21Þ

where ylim represents the limit angle past which the contribution of the sound field is considered
negligible [12]. From Eq. (21), the transmission loss can be obtained from

TL ¼ �10 log td : ð22Þ

2.2. Error function and minimization procedure

When the values of the parameters characterizing the layers and the absorbent material are
known, the previous model can be used to predict the transmission loss of the partition.
Alternatively, when experimental values of the transmission loss are available, the model can be
used to obtain the system parameters which give the best agreement between the theory and the
experimental results.

These optimal parameters can be obtained by introducing a quadratic error function, e; defined
as [17]

e ¼
XN

i¼1

ðti � #tiÞ
2; ð23Þ

where ti represents the value of the transmission coefficient obtained from the experimental
measurements at the ith frequency and #ti is the theoretical value which follows from the equation
obtained for the transmission coefficient in the diffuse field approximation. The minimization of
the error function requires the evaluation of partial derivatives with respect to the parameters to
optimize and to equate them to zero [18,19]. Such parameters, appearing in Eq. (19), are the
following:

(a) Volumetric density rj and thickness hj of the layers. These values are often precisely known
from measurements, and can be considered as constants in the minimization procedure.

(b) Bending stiffness Dj and loss factor Zj of the layers. These parameters, although they can be
found in different tables, usually have different values in the bibliography [6,9,12]. Thus, there
exists an uncertainty in the results obtained from the model based on concrete values of material
parameters from previous studies. In this case, it is claimed that the optimal values of these
parameters (those giving predictions closer to the experimental measurements) can be obtained
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from the theoretical model, as those satisfying the following conditions:

@e
@Dj

¼ 2
XN

i¼1

ðti � #tiÞ
@#ti

@Dj

¼ 0; ð24Þ

@e
@Zj

¼ 2
XN

i¼1

ðti � #tiÞ
@#ti

@Zj

¼ 0: ð25Þ

Note also that different authors assign different values for the loss factors, depending on the
boundary conditions [20].

(c) The absorbent material in the inner part of the partition can be described by means of the
complex wavenumber kb or, alternatively, by means of the complex density rb; both frequency-
dependent and related through Eq. (8). In the case in which the absorbent is a fibrous material (as
is commonly considered in most of the practical applications), several authors have proposed
formulas relating the complex wavenumber with the flow resistance of the material R; and the
frequency f of the incident sound, both being real valued. These formulas are valid only in a finite
frequency range. In the following discussion the absorbent material as described by its flow
resistance R is considered, making use of different models in order to compare the obtained
results. In particular, the following three absorption models are considered:

(a) Delany and Bazley [10] derived the following formula from the adjustment to experimental
measurements:

kb ¼
2pf

c0
1 þ 0:0978

r0f

R

 ��0:754

� j0:189
r0f

R

 ��0:595
" #

ð26Þ

whose applicability is limited to frequencies in the range [16]

0:04p
f

R
p1: ð27Þ

(b) Following a similar technique, Miki [15] proposed the relation

kb ¼
2pf

c0
1þ 0:109

r0f

R

 ��0:618

� j0:160
r0f

R

 ��0:618
" #

ð28Þ

applicable in the same frequency range as Eq. (26).
(c) Finally, Allard and Champoux [16] derived an expression for the material parameters, in

terms of the physical quantities r and K ; corresponding to the dynamic density and the effective
compressibility modulus, corresponding to

kb ¼ 2pf

ffiffiffiffi
r
K

r
; ð29Þ

where the values r and K are given by

r ¼ 1:2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0:0364

r0f

R

 ��2

� j0:1144
r0f

R

 ��1
s

; ð30Þ
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K ¼ 101320

29:64j þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:82

r0f

R

 ��2

þ j24:9
r0f

R

 ��1
s

21:17j þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:82

r0f

R

 ��2

þ j24:9
r0f

R

 ��1
s : ð31Þ

This model is applicable whenever the frequencies are in the range

f

R
p1; ð32Þ

i.e., there is no restriction at low frequencies in this case.
The flow resistance R can be obtained by solving the following differential equation:

@e
@R

¼ 2
XN

i¼1

ðti � #tiÞ
@#ti

@R
¼ 0 ð33Þ

which, together with Eqs. (24) and (25), is evaluated for the three different models described
above, thus obtaining different predictions in the function of the particular model used.

Eqs. (24), (25) and (33) constitute a system of non-linear equations whose resolution allows one
to obtain, therefore, the bending stiffness values D1 and D2; the loss factors Z1 and Z2 of the layers
and the flow resistance R of the absorbent material that minimize the error function. The
complexity of the system suggests the application of an iterative method of resolution of non-
linear systems. In the case of a symmetrical configuration, that is, when both layers are identical,
the system can be simplified to only three equations.

3. Numerical results

Several iterative methods have been used to obtain the optimal parameters which minimize the
error function. For this purpose, a Matlab program was used [18]. Among the gradient-based
methods considered, the method of Broyden [18,19] was the one which offered the highest
convergence velocity towards satisfactory solutions. Furthermore, this method has as the
advantage to avoid to evaluate the Jacobian, thus reducing the computation time. Other methods
based on the gradient, such as the Newton method, also converge to the same solutions, but on
the contrary, the evaluation of the Jacobian slows down calculations. A more extensive discussion
regarding the convergence and the stability of these methods can be found in Ref. [19].

In the studied cases, all the methods converged faster when the input (initial) data were closer to
the searched solution, the convergence times of the methods being similar. Care must be taken
with the choice of the initial values, since due to the non-linear character of the equations, the
iterative algorithm employed for the resolution can converge to wrong solutions. To avoid this
problem the initial values for the iteration were chosen close enough to the expected solution.
These values can be inferred from the literature, such us in the case of the bending stiffness
parameter (varying in a broad range depending on the material) or the loss parameter, whose
value was taken as Z ¼ 0:015 [20]. In the case of the flow resistance, the results are not sensible to
the value chosen (being it positive).
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The implemented methods show convergence problems only when the value of the flow
resistance is very high (of the order of 106 Rayls=m), or when the loss factor is larger than unity,
owing to the bad conditioning of the matrices that appear in the recursive calculation. These
problems were absent since the initial data were much smaller than these values. In those cases,
however, the Simplex method [18,19] gives satisfactory results.

Next, the results obtained after the numerical solving of the model for a double-leaf partition
containing different absorbent materials are presented: a gypsum board (Fig. 2), a steel board
(Fig. 3) and a plywood panel (Fig. 4). In the figures, the results obtained for the transmission loss
at different frequencies are shown together with the experimental data taken from Ref. [12] (in the
case of Fig. 2) and [6] (in the case of Figs. 3 and 4). In every case, the transmission loss was
evaluated with the use of the three different models for absorbent materials in terms of the flow
resistance R; and in the figures are represented by symbols.

Corresponding to these figures, the Tables 1–3 show the numerical values of the material
parameters which minimize the error, together with the average error value and the frequency
ranges in which the models for absorbent materials are applicable, also for the three different
models of absorption.

In a symmetric configuration, the error function corresponds to a three-dimensional surface.
Fixing one of the parameters, it is possible to represent graphically the error as a function of the
other two parameters. This is shown in Fig. 5 for fixed flow resistance R (Fig. 5a) and for fixed
bending stiffness D (Fig. 5b), where the minimum value is appreciated. The plots were obtained
for the case of the double-leaf gypsum board partition, using the Trochidis and Kalaroutis theory
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[12] to modelize the partition, and the Miki’s formula [15] to modelize the absorbent material. The
results correspond to those shown in Table 1.

4. Conclusions

From the results obtained, some conclusions can be extracted. First, the predictions of
transmission loss obtained with the proposed minimization method show a better agreement with
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Table 1

Numerical results from the minimization method, for a double-leaf gypsum board partition

Model D (Nm) Z R (Rayls/m) Average error Frequency lower Frequency higher

(dB) limit (Hz) limit (Hz)

Delany and Bazley 791.33 0.046 20188 0.98 808 20188

Miki 791.02 0.045 20812 0.93 832 20812

Allard and Champoux 810.85 0.046 23098 0.86 23098

Optimal values of the bending stiffness and the flow resistance are given, as obtained with the three different models of

absorbent material, together with the average error and the frequency limits in which the models are applicable.

Table 2

As in Table 1, for a partition containing a steel board

Model D (Nm) Z R (Rayls/m) Average error Frequency lower Frequency higher

(dB) limit (Hz) limit (Hz)

Delany and Bazley 0.922 0.0037 2943.2 0.85 116 2943

Miki 0.939 0.0038 2787.8 0.9 112 2788

Allard and Champoux 0.933 0.0004 2959.8 2 2960

Table 3

As in Table 1, for a partition containing a plywood panel

Model D (Nm) Z R (Rayls/m) Average error Frequency lower Frequency higher

(dB) limit (Hz) limit (Hz)

Delany and Bazley 209 0.0868 26526 1.4 1061 26526

Miki 210 0.0889 26796 1.37 1072 26796

Allard and Champoux 142.3 0.125 29886 1.25 29886
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Fig. 5. Contour plot of the error function obtained for fixed flow resistance R (5a) and for fixed bending stiffness D

(5b), as a function of the other parameters. The results correspond to a double-leaf gypsum board partition with the

absorbent material modelled by the Miki’s formula. The minimum values correspond to those in Table 1.
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the experimental values than those published previously [6,12]. This improvement of the
prediction was obtained with three different models of absorbent materials. These predictions are
well adjusted to the experimental measurements, with errors below the typical values in similar
studies. As shown in the tables, the error is of the order of 1 dB: This results in an error in the
prediction of same order of magnitude as that of the error obtained from the measurement of the
transmission loss. In recent papers [21,22] a deviation between predictions and measurements of
the transmission loss between 1 and 2 dB is reported. Then, it seems reasonable to optimize the
material parameters to that degree of resolution.

Second, a study has been performed considering three different models of absorbent material.
The prediction of the transmission loss can also be refined with the choice of a concrete model,
which is strictly applicable only in a given frequency band. It is observed that, however, in those
cases where the measurements correspond to frequencies outside the range of validity of the
models, the adjustment can still be considered as reasonable. This can be appreciated in Fig. 2,
with the models of Delany and Bazley and Miki.

Finally, although the results obtained for the transmission loss in the case of a double-leaf
plywood panel partition (Fig. 4) show a better agreement with the experimental values than those
published previously [6,12], the predictions near the critical frequency of the partition
(corresponding to the maximum excitation of bending waves in the layers) show some
discrepancy with respect to the measurements. This fact can be related to several factors, such
as a non-homogeneous behaviour of the plywood, which was not taken into account in this study.
Furthermore, as it was shown in Ref. [6], the bending stiffness is not constant, but dependent on
the frequency (for example, D ¼ 190 Nm at 100 Hz and 390 Nm at 2000 Hz; having considered
for the prediction the mean value 290 Nm). Moreover, the model assumes that the layers and the
absorbent material have infinite dimensions whereas the measurements have been performed on
samples of finite dimensions. The cutting of the samples may have changed the mechanical
properties of the material, thus influencing the measuring results. The clamping of the partition
can also have a considerable influence on the measurements. Then, assuming a bending stiffness
with constant value it is difficult to improve the prediction near the critical frequency. However,
the simplified model considered here, which assumes constant parameter values, allows
improvement of the predictions in most of the frequency range. It is expected that the correct
description of the transmission loss near the critical frequency requires the consideration of a
frequency-dependent bending stiffness. The numerical study of the predictions of the model in
such a case is in progress.
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